
How eRA Develops Software

Executive Summary: In an organized, iterative, carefully documented manner, eRA has built a
dense infrastructure of methodology, standards, and procedures to underpin the development of a
reliable enterprise system for electronic research administration.

For software development and quality assurance, NIH has relied thus far solely on
contractors. Now the retirement of the legacy IMPAC system is freeing up NIH programmers to
join the development team.

eRA’s methodology combines the classical Waterfall method and the prototype-oriented
Spiral method. It proceeds in three phases:

1. Definition Phase: systems analysis and software development analysis;
2. Development Phase: software design, code generation, and testing; and
3. Maintenance Phase: perfective maintenance and other kinds of maintenance,

documentation, and training.

To capture the needs of users at every step, eRA employs focus groups, user groups, and
the group advocates. Key features of the process are the use of database and tools technology
from Oracle and reliance on a strongly modular approach that permits systematic upgrading of
modules on a regular basis. End Summary

 For eRA, developing software is a mission-critical business. With some 576,000,000
transactions taking place annually in IMPAC II and Commons, the functioning of NIH’s
extramural grant and contract system relies on a dependable and effective software development
process.
 eRA has built a dense project infrastructure (see figure) to ensure the overall integrity of
the system. Other features of the project also contribute:

• = for database technology, we rely on Oracle, a leading vendor with robust products;
• = our strongly modular approach has enabled us better to target the needs of particular user

groups while reducing the complexity of each piece of the project; and
• = we have moved ever farther toward empowering users and involving them at every step.

Our recent Prioritization Exercise brought forth a highly articulated set of user needs,
with estimated hours and required funds. Now we are working on methods whereby,
through their group advocates, user groups can play a key role in bug-fixing and ongoing
requirement prioritization.

 To ensure development that is both rapid (i.e., as efficient as possible) and high-quality,
eRA employs a blend of two major models of software development: the classic Waterfall
method and the Spiral method first advocated by Barry Boehm.

eRA PROJECT INFRASTRUCTURE

User Groups

METHODOLOGY

STANDARDS PROCEDURES

Project

Mgt Plan

System
Admin
Manual

Training
Plan

Configur.

Mgt Plan

Software

QA Plan
DBA

Manual

Init. Function
Architectural
Description

(IFAD)

Software
Development

Plan

Security
Plan

Disaster
Recovery Plan

The classic Waterfall method begins with target system requirements and progresses
through analysis, design, development, acceptance, installation, and maintenance. This approach
rates high in terms of logical planning, development, and solidity; but its inflexibility to changes
in user requirements can lead to completed systems that must undergo expensive revisions. So
eRA balances this approach with one that relies more on prototyping—the so-called Spiral
method.

eRA’s prototypes typically use disposible code to demonstrate concepts, process flows,
and capability. In an iterative, phased way, we gradually build out one element after another in a
manner that reduces risk and permits flexible adaptation to evolving user needs. Users are
deeply involved in prototype development.
 eRA favors the Waterfall method in the Definition Phase (systems analysis and
requirements analysis) as well as in the Maintenance Phase (correcting defects, making
improvements, and supporting users). The Development Phase, in contrast, tends to follow the
Spiral method.

 3

Definition Phase

In the Definition Phase eRA specifies the scope, functions, and capabilities of the
resultant system by identifying the requirements of the system and software. Specifically, we
define the data, functions, performance guidelines, interfaces, design constraints, and validation
criteria for the completed system.

In the Definition Phase, an eRA Task Team from NIH and its contractors first undertakes
Systems Analysis to define the role and scope of the software system in the context of general
planning.

Software Requirements Analysis

Requirements analysis asks questions about the function, capability, and performance of
the new software system; the constraints that will limit its development and operation; and the

Systems Analysis &
Requirements Analysis

Systems Analysis &
Requirements Analysis

Definition
Phase

DesignDesign

Code Generation

TestingTesting

MaintenanceMaintenance

JRV

Business
Plan

Project White
Paper

(e.g. BPR
Report)

Key Activities:
1. Identify/Refine Requirements (JRV)
2. Conduct BPR as needed
3. Generate Project Report detailing
concept of operations,
requirements, etc.

Focus Groups
(8-12 people)

Three (3) Meetings:
 One (1) to present materials,
 issue instructions
 Two (2) to review findings

Key Activities:
1. Define/Refine business rules
2. Define/Refine program model
3. MUSCoW analysis

JAD Group
(6-8 people)

Key Activities:
1. Deployment
2. Training
3. Software support

Project
Plan

Design
Specification

Program the
Prototype / System

Define/Refine
the Data Model

User’s
Guide

Test
Plan

Unit Testing

Acceptance
Testing

Integration
Testing

Need JAD
Review?

No

Key Activities:
1. Program the prototype/system
2. Prepare/update User’s Guide
 and Test Plan

Key Activities:
1. Unit test of prototype/program
2. Integration testing
3. Demonstrate prototype to
 JAD for further review
4. Conduct acceptance testing
 when JAD work is complete

Review design,
business rules, model

Yes

Development
Phase

Maintenance
Phase

 4

criteria that will be used to validate it. It seeks to define what role the software will play in the
business system and what features are needed to fit this role.

The Task Team reviews existing eRA and assignment application systems, meeting with
users and gathering information from the group advocates as representatives of the eRA user
group process at NIH. The Task Team defines the project scope, process flow, and many of the
requirements, formulating the results in an initial draft of a Module Initiative Report. The Task
Team then meets with a select group of representatives from different NIH Institutes and Centers
(ICs)—or, for Commons, with representatives of the research community—in two focus groups
that prepare comments about the processes and requirements in the report.

Development Phase

 The Development Phase contains three steps: Software Design, Code Generation, and
Testing.

Software Design

In the Software Design step, the requirements and capabilities collected and approved
during the Definition Phase are translated into instructions defining the architecture, appearance,
flow, and operation of the software system. The development team prepares a series of
prototypes that iteratively define and refine the requirements of the process. These prototypes,
along with the project documentation, are presented in joint application development (JAD)
sessions to a select group of users whose input, comment, and critique help refine the planning
and designing documents.

To start the Development Phase and the first step in software design, the design leader
prepares draft copies of the Project Plan (defining scope) and Design Specification (defining
development efforts) for use in the JAD sessions. JAD members focus their efforts on
establishing priorities for requirements/features, developing phases for the software releases, and
ensuring all requirements are uncovered. This is the time for MuSCoW
(Must/Should/Can/Wish) analysis that establishes the relative essentiality of users’ needs.

The Design Specification describes the system architecture by using the system
requirements to develop a data model and the requirements to develop the software model.
Because software application systems invariably require modification after implementation, it is
extremely important to build a software model that provides clear distinctions between the
storage/use of the underlying data and the operation of the software application system.

Technical reviews are conducted to ensure the quality of the design and the accuracy of
the design direction. Since the prototypes only provide initial representations of possible eRA

 5

application systems, reviews of the Design Specification are initially limited to Internal Design
Review (IDR), performed by members of an eRA Task Team, including members of the Quality
Assurance team. During the IDR, the design is reviewed for adherence to the software
requirements and anticipated functions of the system. Deficiencies and changes identified by the
IDR committee result in refinements of the design. The review of the prototype by the JAD
group forms part of the Critical Design Review (CDR), conducted at the completion of the
prototype phase.

Code Generation

Code Generation is a process of translating design instructions into programming
language statements that can be automatically transformed into computer-executable
instructions. The Design Specification contains the instructions that the development team needs
to build the software application system and the accompanying database from the software
model and data model, respectively. The data model defines the architecture for the database by
identifying the data tables as well as their relationships with each other and with the software
model. From the data model, detailed procedural instructions (e.g., SQL for a relational database
management system such as eRA’s) are constructed to build the tables, their indexes, and any
accompanying constraints. The software model illustrates the layout of eRA application system
screens, the relationship between the screens, and the instructions that must be performed.

The functional hierarchy defined in the design provides the structure for the software
model and thus the modules for the resultant source code. The main module (top or parent) is
coded first, then the functionality of the system is developed downward from the parent module,
with increasing specificity. The functionality of the system can thereby be quickly coded and
established while the details are developed during subsequent stages.

Technical reviews are conducted periodically to validate the source code. Code reviews
are performed by “independent” team members--staff who did not develop the code in question.
The focus of a review is to ensure that the code adheres to the instructions provided in the design
document, conforms to coding standards, satisfies the software requirements, and makes use of
common modules when possible.

Next the development team proceeds with creating an initial system prototype that
displays the functionality of an eRA application system at the highest level. The JAD meets to
respond to this prototype as well as the Project Plan and Design Specification documents,
seeking to refine the system, verify its functionality and accuracy while identifying deficiencies
and inconsistencies.

Testing/Quality Assurance

eRA takes a proactive approach to software quality by striving to avert problems and
potential compromises in the design stage rather than resolving them later. Quality assurance

 6

staff participate in the technical reviews at both design and coding stages. This makes them
aware of design decisions, the proposed functionality of the system, and the operation of the
software so that they can be knowledgeable testers.

The Design Specification includes validation criteria for each module. These provide the
foundation for constructing the Software Test Plan, written by the quality assurance staff. The
validation of the source code and the application system against a checklist occurs thus:

1. Unit Testing. The contractor performs unit testing during prototyping and code

generation to verify the software against the validation criteria listed in the Design
Specification. Full integration testing is conducted only at strategic points;

2. Integration Testing. After the source code has been unit tested and accepted, it is
incorporated into the entire application system and tested by a quality assurance
contractor to discover problems arising from conflicts between the new module and
existing modules.

3. Acceptance Testing. When the software is determined to be acceptable by the
developing contractor, then acceptance testing begins. Acceptance testing is the most
crucial testing activity in terms of verifying the client’s acceptance of the software
application system. Acceptance testing is completed when NIH accepts that the software
application system satisfies the criteria defined in the Software Test Plan.

Maintenance Phase

Realistically, changes to software are inevitable. Expected maintenance activities
include:

• = Corrective Maintenance: efforts to identify the deficiencies, develop solutions, and
implement them. eRA is revising its method of registering defect reports to give user
group advocates a key role in the process.

• = Perfective Maintenance: fulfilling new user requirements by following the

development path from the design step, through code generation, testing, and into
implementation.

• = Preventive Maintenance: support staff identify ways to improve the system’s

efficiency, reliability, and flexibility. This may include reorganizing the data objects
based upon changing usages, adding indexes to improve performance, and moving
objects to reduce storage requirements.

 7

• = Operational Maintenance: reducing storage space and improve performance—for
instance, rebuilding fragmented tables and their indexes to recover lost disk space and
reduce query times.

• = Adaptive and Structural Maintenance: updating software and hardware, including

new devices such as optical drives.

Documentation and Training

What is termed the Maintenance Phase from the perspective of software development is
clearly also the Functional Phase from the perspective of users. Essential to the success of a
software system are documentation and training. eRA’s contractor develops and delivers
documentation, including User’s Guides, to NIH as part of its contract. OER also produces
documentation as well as providing training for users. eRA is currently undertaking a concerted
effort to develop more user-friendly documentation to meet users’ needs to learn essential
functions of the various modules as well as to identify additional valuable functionality in the
system that can match their needs.

